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Introduction & Outline

• Point to Point blocking/non-blocking communication

• Collective communication with non-contiguous data

• Groups and communication management

• Derived Datatypes

• Persistent communication

• Parallel I/O

• Status of MPI-2
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Advanced point-to-point 
communication
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Point to Point Comm. I
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• Blocking send/receive

• MPI_Send, does not return until buffer is safe to reuse: either when 
buffered, or when actually received. (implementation / runtime 
dependent)

• Rule of thumb: send completes only if receive is posted/executed



Point to Point Comm. II
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• Synchronous Mode
– MPI_Ssend, which does not return until matching receive has 

been posted (non-local operation).

• Buffered Mode
– MPI_Bsend, which completes as soon as the message buffer is 

copied into user-provided buffer (one buffer per process)



Point to Point Comm. III
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• Ready Mode
– MPI_Rsend, which returns immediately assuming that a matching 

receive has been posted, else erroneous.

• Deadlock occurs when all tasks are waiting for events that haven’t 
been initiated yet. It is most common with blocking communication.



Point to Point Comm. III
• Ready Mode has least total overhead. However the assumption is 

that receive is already posted. Solution: post receive, synchronise 
(zero byte send), then post send.

• Synchronous mode is portable and “safe”. It does not depend on 
order (ready) or buffer space (buffered). However it incurs 
substantial overhead. 

• Buffered mode decouples sender from receiver. No sync. overhead 
on sending task and order of execution does not matter (ready). 
User can control size of message buffers and total amount of space. 
However additional overhead may be incurred by copy to buffer.

• Standard Mode is implementation dependent. Small messages are 
generally  buffered (avoiding sync. overhead) and large messages 
are usually sent synchronously (avoiding the required buffer space)

7



Point to Point Comm IV: non-blocking
• Nonblocking communication: calls return, system handles buffering

• MPI_Isend, completes immediately but user must check status 
before using the buffer for same (tag/receiver) send again; buffer 
can be reused for different tag/receiver.

• MPI_Irecv, gives a user buffer to the system; requires checking 
whether data has arrived.
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Non-blocking Example
• Blocking operations can lead to deadlock

• Actual user code:

• Problem: all sends
are waiting for
corresponding
receive:
nothing happens

• Why did the user 
code work on one
machine, but not
in general? 
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   !  SEND WELL DATA
      LM=6*NES+2
      DO I=1,NUMPRC
        NT=I-1
        IF (NT.NE.MYPRC) THEN
          print *,myprc,'send',msgtag,'to',nt
          CALL MPI_SEND(NWS,LM,MPI_INTEGER,NT,
    & MSGTAG,MPI_COMM_WORLD,IERR)
        ENDIF
      END DO

   !  RECEIVE WELL DATA
      LM=6*100+2
      DO I=2,NUMPRC
        CALL MPI_RECV(NWS,LM,MPI_INTEGER,
    &   MPI_ANY_SOURCE,MSGTAG,MPI_COMM_WORLD,IERR)
   ! do something with data
      END DO



Solution using non-blocking send
      real*8 sendbuf(d,np-1), recvbuf(d)

      MPI_Request sendreq(np)

      do p=1,nproc-1

        pp = 0

        if (p.ge.mytid) pp = pp+1

          call mpi_isend(sendbuf(1,p),d,MPI_DOUBLE,pp,msgtag,

     &         comm,sendreq(p),ierr)

      end do

      do p=1,nproc-1

        call mpi_recv(recvbuf(1),d,MPI_DOUBLE,MPI_ANY_SOURCE,

     &         msgtag,comm,ierr)

c do something with incoming data

      end do

Note: This requires multiple send buffers, should “wait” later... 10



Solution using non-blocking send/recv
      real*8 sendbuf(d,np-1), recvbuf(d,np-1)

      MPI_Request sendreq(np-1), recvreq(np-1)

      integer sendstat(MPI_STATUS_SIZE),recvstat(MPI_STATUS_SIZE)

      do p=1,nproc-1

C       mpi_isend as before

      end do

      do p=1,nproc-1

        pp = p

        if (pp.ge.mytid) pp = pp+1

        call mpi_irecv(recvbuf(1,p),d,MPI_DOUBLE,pp,

     &         msgtag,comm,recvreq(p),ierr)

      end do

      call mpi_waitall(nproc-1,sendreq,sendstat,ierr)

      call mpi_waitall(nproc-1,recvreq,recvstat,ierr)
11

Note: multiple send 
and receive buffers;
Explicit wait calls to 
make sure commun-
ications are finished.



Non-blocking example
• Non-blocking operations allow overlap of computation and 

communication.

• Application: distributed matrix-vector product

• Also non-blocking R/B/Ssend
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MPI_Irecv( <declare receive buffer> )
MPI_Isend( <send local data> )
…. Do local operations ….
MPI_Waitall( <make sure all receives finish> )
…. Operate on received data ….



Point to Point Comm. V
• “Wildcard communication”: source or details unknown

 can use MPI_ANY_SOURCE or MPI_ANY_TAG

 MPI_IPROBE(source, tag, comm, flag, status)
  (non-blocking; MPI_Probe is blocking)

MPI_Waitany(int count, MPI_Request 
*array_of_requests, int *index, MPI_Status 
*status)

      (allows processing of data as it comes in)

 MPI_Testany / Testall : non-blocking
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Point to Point Comm. VI
• MPI_Sendrecv : both in on call, source and destination can be the 

same

• Also MPI_Sendrecv_Replace; needs additional buffering

• Example 1: exchanging data with one other node; target and source 
the same

• Example 2: chain of processors
– Operate on data
– Send result to next processor, and receive next input from 

previous processor in line
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MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag, 
                             recvbuf, recvcount, recvtype, source, recvtag, comm, status)



Collective communications
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Advanced Collective Comm. II
• MPI_{Scatter,Gather,Allgather}v
• What does v stand for?

– varying size, relative location of messages

• Advantages
– more flexibility
– less need to copy data into temp. buffers
– more compact

• Disadvantage
– Lot harder to program
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CALL mpi_scatterv  ( SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, 
RECVBUF, RECVCOUNT, RECVTYPE, ROOT, COMM, IERR ) 

SENDCOUNTS(I) is the number of items of type SENDTYPE to send 
from process ROOT to process I.  Defined on ROOT. 

DISPLS(I) is the displacement from SENDBUF to the 
beginning of the I-th message, in units of SENDTYPE. 
Defined on ROOT. 

Advanced Collective Comm. II+
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• Scatter vs Scatterv



Allgatherv Example
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 MPI_Comm_size(comm,&ntids); 

 sizes = (int*)malloc(ntids*sizeof(int)); 

 MPI_Allgather(&n,1,MPI_INT,sizes,1,MPI_INT,comm);

 offsets = (int*)malloc(ntids*sizeof(int)); 

 s=0; 

 for (i=0; i<ntids; i++)

   {offsets[i]=s; s+=sizes[i];}

 N = s;

 result_array = (int*)malloc(N*sizeof(int)); 

 MPI_Allgatherv

    ((void*)local_array,n,MPI_INT,(void*)result_array,

     sizes,offsets,MPI_INT,comm); 

 free(sizes); free(offsets);



Derived Datatypes
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Derived Datatypes I
• MPI basic data-types are predefined for contiguous data 

of single type

• What if application has data of mixed types, or non-
contiguous data?
– existing solutions of multiple calls or copying into 

buffer and packing etc. are slow, clumsy and waste 
memory

– better solution is creating/deriving datatypes for these 
special needs from existing datatypes

• Derived datatypes can be created recursively at runtime

• Automatic packing and unpacking
21



Derived Datatypes II
• Elementary: Language-defined types

• Contiguous: Vector with stride of one

• Vector: Separated by constant “stride” 

• Hvector: Vector, with stride in bytes

• Indexed: Array of indices (for scatter/gather) 

• Hindexed: Indexed, with indices in bytes

• Struct: General mixed types (for C structs etc.)
22



Derived Datatypes III
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blklen =2

stride=5, in elements

Vector 
(strided)

“Struct”

v_blk_len[0]=3

Indexedcount = 3
blocks

v_blk_len[1]=2 v_blk_len[2]=1

v_disp[0]=0 v_disp[1]=5  (in elements) v_disp[1]=12

count = 3
elements

type[0] type[1] type[2]

v_disp[0] v_disp[1] (in bytes) v_disp[2]

count = 3
blocks

v_blk_len[0]=2 v_blk_len[1]=3 v_blk_len[2]=4



Derived Datatypes IV
• MPI_TYPE_VECTOR function allows creating non-

contiguous vectors with constant stride
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mpi_type_vector(count, blocklen, stride, oldtype, vtype, ierr)
mpi_type_commit(vtype, ierr)

1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20

A

call MPI_Type_vector(ncols, 1, nrows, MPI_DOUBLE_PRECISION, vtype, ierr)

call MPI_Type_commit(vtype, ierr)
call MPI_Send( A(nrows,1) , 1 , vtype …)

ncols = 4
nrows = 5



Communicators and Groups
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Communicators and Groups I
• All MPI communication is relative to a communicator 

which contains a context and a group. The group is just a 
set of processes. 
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Communicators and Groups II
• To subdivide communicators into multiple non-

overlapping communicators – Approach I
– e.g. to form groups of rows of PEs 
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    :
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
myrow = (int)(rank/ncol);
    :



MPI_Comm_split
• Argument #1: communicator to split

• Argument #2: key, all processes with the same key go in 
the same communicator

• Argument #3 (optional): value to determine ordering in 
the result communicator

• Argument #4: result communicator

28

    :
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
myrow = (int)(rank/ncol);
MPI_Comm_split(MPI_COMM_WORLD, myrow,rank,row_comm);
    :



Communicators and Groups III
• Same example – using groups

• MPI_Comm_group: extract group from communicator

• Create new groups

• MPI_Comm_create: communicator from group

29



                                             :
MPI_Group base_grp, grp;  MPI_Comm row_comm, temp_comm; 
int row_list[NCOL], irow, myrank_in_world;

MPI_Comm_group(MPI_COMM_WORLD,&base_grp);  // get base group 

MPI_Comm_rank(MPI_COMM_WORLD,&myrank_in_world); 
irow = (myrank_in_world/NCOL); 
for (i=0; i <NCOL; i++)  row_list[i] = i;

for (i=0; i <NROW; i++){
   MPI_Group_incl(base_grp,NCOL,row_list,&grp); 
   MPI_Comm_create(MPI_COMM_WORLD,grp,&temp_comm); 
   if (irow == i) *row_comm=temp_comm; 
   for (j=0;j<NCOL;j++) row_list[j] += NCOL;
} 
      :

Communicator groups example
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Communicators and Groups IV
• When using MPI_Comm_split, one 

communicator is split into multiple non-
overlapping communicators. Approach I is more 
compact and is most suitable for regular 
decompositions. 

• Approach II is most generally applicable. Other 
group commands: union, difference, 
intersection, range in/exclude
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Persistent communication
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Persistent Communication I
• Saves arguments of a communication call and reduces 

the overhead for subsequent calls

• The INIT call takes the original argument list of a send or 
receive call and creates a corresponding communication 
request ( e.g., MPI_SEND_INIT, MPI_RECV_INIT )

• The START call uses the communication request to start 
the corresponding operation (e.g. MPI_START, 
MPI_STARTALL )

• The REQUEST_FREE call frees the persistent 
communication request(MPI_REQUEST_FREE)

33



Persistent Communication II
• A typical situation where persistence might be used.

34

   :
MPI_Recv_init(buf1, count,type,src,tag,comm,&req[0]);
MPI_Send_init(buf2, count,type,src,tag,comm,&req[1]);

for (i=1; i < BIGNUM; i++)
{
 MPI_Start(&req[0]);
 MPI_Start(&req[1]);
 MPI_Waitall(2,req,status);
 do_work(buf1, buf2);
}

MPI_Request_free(&req[0]);
MPI_Request_free(&req[1]);
   :



Persistent Communication III
• Performance benefits (IBM SP2) from using Persistence
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Improvement in Wallclock Time
Persistent vs. Conventional Communication 

msize (bytes) mode          improvement       mode     improvement
8     async          19 %      sync      15 %
4096 async  11 %  sync  4.7 %
8192 async  5.9 %  sync  2.9 %
800,000 -  -  sync  0 %
8,000,000 -  -  sync  0 %



Parallel I/O
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What is Parallel I/O?
• In HPC parallel I/O, multiple MPI tasks can

– simultaneously read or write to 
– a single file 
– in a parallel file system, 
– through the MPI-IO interface.  A parallel file system appears as a 

normal Unix file system and (usually) employs multiple I/O 
servers for sustaining high I/O throughput.

• Alternatives to parallel MPI-IO:
– Task 0 accesses file.  Task 0 gathers/scatters data.
– Each process opens a separate file and writes to it

37



Why Parallel I/O?
• I/O missing from MPI-1 standard, defined independently, then 

subsumed into MPI-2
• HPC Parallel I/O requires some work, but

– Provides high throughput
– Single (unified) file for vis. and pre/post processing

• Alternative I/O is simple to code, but has
– Poor convenience (single task access to 1 file) or
– Requires file management (each task uses local disk)

• MPI-IO has mechanisms to
– perform synchronization and data movement syntax.
– define noncontiguous data layout in file (MPI datatypes)
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Simple MPI-IO
Each MPI task reads/writes a single block
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P(n-1)

P#  is a single processor with rank #.…

memory
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Reading, Using Individual File Pointers
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C Code
MPI_File fh;
MPI_Status status;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

bufsize = FILESIZE/nprocs;
nints   = bufsize/sizeof(int);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", 
              MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);
MPI_File_seek(  fh, rank*bufsize, MPI_SEEK_SET);
MPI_File_read(  fh, buf, nints,   MPI_INT, &status);
MPI_File_close(&fh);



Reading, Using Explicit Offsets
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F90 Code
  include 'mpif.h'
  integer status(MPI_STATUS_SIZE)
  integer (kind=MPI_OFFSET_KIND) offset

  nints  = FILESIZE/(nprocs*INTSIZE)
  offset = rank * nints * INTSIZE

  call MPI_FILE_OPEN(   MPI_COMM_WORLD, '/pfs/datafile', &
                        MPI_MODE_RDONLY,                 &
                        MPI_INFO_NULL, fh, ierr)

  call MPI_FILE_READ_AT(fh, offset, buf, nints, 
                        MPI_INTEGER, status, ierr)

  call MPI_FILE_CLOSE(fh, ierr)



Writing (with pointers or offsets)
• Use MPI_File_write or MPI_File_write_at
• MPI_File_open flags:

– MPI_MODE_WRONLY  (write only)
– MPI_MODE_RDWR  (read and write)
– MPI_MODE_CREATE  (create file if it doesn’t exist)
– Use bitwise-or ‘|’ in C, or addition ‘+” in Fortran to combine 

multiple flags.
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Shared Pointers
• One implicitly maintained pointer per collective file open
• MPI_File_read_shared

• MPI_File_write_shared

• MPI_File_seek_shared



Noncontiguous Accesses
• Common in parallel applications

• Example: distributed arrays stored in files

• A big advantage of MPI I/O over Unix I/O is the ability to 
specify noncontiguous accesses in memory and file 
within a single function call by using derived datatypes

• Allows implementation to optimize the access

• Collective IO combined with noncontiguous accesses 
yields the highest performance. 
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A Simple File View Example
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Example for 4-task job.etype = MPI_DOUBLE_PRECISION

filetype = View sees DP every 4th DP.

displacements

FILE:  Same View on each task with different displacementshead of file

…

… task0
task1
task2
task3

…
…
…

FILE



File Views
• A triplet (displacement, etype, and filetype) passed to 
MPI_File_set_view

• displacement = number of bytes to be skipped from the 
start of the file

• etype = basic unit of data access (can be any basic or 
derived datatype)

• filetype = specifies layout of etypes on disk.
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Using File Views
• 1 block from each task, written in task order.

• MPI_File_set_view assigns regions of the 
file to separate processes
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File

P0 P1 P2 P3



File View Code
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#define N 100
MPI_Datatype arraytype;
MPI_Offset disp;

MPI_Type_contiguous(N, MPI_INT, &arraytype);
MPI_Type_commit(&arraytype);

disp = rank*sizeof(int)*N; etype = MPI_INT;

MPI_File_open(    MPI_COMM_WORLD, "/pfs/datafile", 
                  MPI_MODE_CREATE | MPI_MODE_RDWR, 
                  MPI_INFO_NULL, &fh);
MPI_File_set_view(fh, disp, MPI_INT, arraytype, "native", 
                  MPI_INFO_NULL);
MPI_File_write(   fh, buf, N, MPI_INT, MPI_STATUS_IGNORE);



Using File Views
• 2 blocks from each task, round-robin to file.

• MPI_File_set_view assigns regions of the file to 
separate processes
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File

P0 P1 P2 P3NW NW



File View Code
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   int buf[NW*2];
   MPI_File_open(MPI_COMM_WORLD, "/data2“, MPI_MODE_CREATE |
                   MPI_MODE_RDWR,MPI_INFO_NULL,&fh);

   /* this processor can see only 2 blocks of NW ints,
      NW*npes apart */
   MPI_Type_vector(2, NW, NW*npes, MPI_INT, &fileblk);
   MPI_Type_commit(                         &fileblk);
   disp = (MPI_Offset)rank*NW*sizeof(int);
   MPI_File_set_view(fh, disp, MPI_INT, fileblk, "native",
                     MPI_INFO_NULL);

   /* processor writes 2 ‘ablk’, which are NW ints each */
   MPI_Type_contiguous(NW,   MPI_INT, &ablk);
   MPI_Type_commit(&ablk);
   MPI_File_write(fh, (void *)buf, 2, ablk, &status);



Collective I/O in MPI
• A critical optimization in parallel I/O

• Allows communication of “big picture” to file system

• Framework for 2-phase I/O, in which communication 
precedes I/O (uses MPI machinery)

• Basic idea:  build large blocks, so that reads/writes in I/O 
system will be large

50

Small individual
requests

Large collective
access



COLLECTIVE I/O
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Memory layout on 4 processors

then written to File layout

MPI collected in temporary buffers



COLLECTIVE I/O
• MPI_File_read_all,          
MPI_File_read_at_all, etc

• _all indicates that all processes in the group specified 
by the communicator passed to MPI_File_open will 
call this function

• Each process specifies only its own access information 
-- the argument list is the same as for the non-collective 
functions
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COLLECTIVE I/O
• By calling the collective I/O functions, the user allows an 

implementation to optimize the request based on the 
combined requests of all processes

• The implementation can merge the requests of different 
processes and service the merged request efficiently

• Particularly effective when the accesses of different 
processes are noncontiguous and interleaved
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More advanced I/O
• Asynchronous I/O: iwrite/iread; terminate with 
MPI_Wait

• Split operations: read/write_all_begin/end; 
give the system more chance to optimize
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Passing Hints to the Implementation
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MPI_Info info;

MPI_Info_create(&info);

/* no. of I/O devices to be used for file striping */
MPI_Info_set(info, "striping_factor", "4");

/* the striping unit in bytes */
MPI_Info_set(info, "striping_unit", "65536");

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", 
         MPI_MODE_CREATE | MPI_MODE_RDWR, info, &fh);

MPI_Info_free(&info);



Examples of Hints (used in ROMIO)
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• striping_unit

• striping_factor

• cb_buffer_size

• cb_nodes

• ind_rd_buffer_size

• ind_wr_buffer_size

• start_iodevice

• pfs_svr_buf

• direct_read

• direct_write

MPI-2 predefined hints

New Algorithm 
Parameters

Platform-specific hints



Summary of Parallel I/O Issues
• MPI I/O has many features that can help users achieve 

high performance

• The most important of these features are the ability to 
specify noncontiguous accesses, the collective I/O 
functions, and the ability to pass hints to the 
implementation

• Use is encouraged, because I/O is expensive!

• In particular, when accesses are noncontiguous, users 
must create derived datatypes, define file views, and use 
the collective I/O functions
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MPI-2 Status Assessment
• All vendors now have MPI-1. Free implementations 

(MPICH, LAM) support heterogeneous workstation 
networks.

• MPI-2 implementations are being undertaken now by all 
vendors.
– Fujitsu, NEC have complete MPI-2 implementations

• MPI-2 implementations appearing piecemeal, with I/O 
first.
– I/O available in most MPI implementations
– One-sided available in some (e.g., NEC and Fujitsu, parts from 

SGI and HP, parts coming soon from IBM)
– OpenMPI (aka LAM) and MPICH2 now becoming complete
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